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ABSTRACT

Breast cancer is one of the most common cancers afflicting
women. Early detection and effective treatment are critical to
improving the chances of survival. Since invasive ductal
carcinoma (IDC) accounts for 80% of all breast cancers, early
detection of IDC cells plays an instrumental role in controlling
cancer outcomes. While histopathological image analysis is the
gold standard for detecting cancer, it is very challenging for
pathologists to examine large patches of benign regions for
identifying malignant cells. This process is not only prone to
pathologists” subjectivity but also quite time-consuming,
laborious and expensive. Deep learning techniques, particularly
convolutional neural networks (CNNs), can mechanize the
detection process to make it more objective, precise, and faster
since they are good at learning predominant features
automatically. However, lack of enough labelled and class
balanced data samples are some of the practical challenges in
adoption of deep learning methods for such problems. In this
paper, we propose an image classification model using CNNs
for IDC cell detection in histopathology slides. Further, we have
performed a comparative analysis of some of the state-of-the-
art CNN architectures and applied transfer learning techniques.
By trying out experiments on such kinds of models through
transfer learning and optimization techniques, we have
identified the most suitable transfer learning approach based
on the EfficientNet-B7 network that has achieved accuracy of
90%, sensitivity of 91%, specificity of 90%, F1-score of 84% and
balanced accuracy of 91%. This is an improvement on some of
the previous research literature on this dataset. Through our
approach, this research topic has focused on the benefits of using
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CNNs and transfer learning techniques to solve the IDC cell
image classification problem with better accuracy and efficiency.
This helps us in laying down a state-of-the-art approach for
IDC detection through breast cancer histopathology image
classification.

Keywords: deep learning, CNN architecture, accuracy, precision,
transfer learning, hyperparameter tuning, learning rate

INTRODUCTION
1.1 Background of the Study

As per The World Health Organization (WHO, 2020), breast cancer is the
most common cancer afflicting women. It is estimated that in 2018 alone,
breast cancer has contributed to 2.1 million cases and 627,000 deaths.
Further, breast cancer represents 24% of all cancers diagnosed in women
and accounts for the largest proportion of cancer-related deaths
(approximately 15%) in women.

Early diagnosis and effective treatment are instrumental in controlling
cancer mortality. Due to advancements in detection techniques and earlier
diagnosis, there has been a decrease in premature mortality rates (WHO,
2020). This drives the need to improve detection techniques at an early
stage. Despite advances in medical automation, histopathological slide
image diagnosis is still considered the gold standard for detecting cancer.
However, this task is complex, time-consuming, laborious, expensive, and
dependent on manual qualitative analysis of the pathologist. In less
developed areas, there is a shortage of competent pathologists and the
highly elaborate process adds to pathologist fatigue (Yan et al., 2020). This
is the key motivation to develop automatic methods that can not only enable
the pathologist to enhance the effectiveness of the diagnostic process but
also make the early detection faster and precise.

The most common types of breast cancer include invasive ductal
carcinoma (IDC) and invasive lobular carcinoma. IDC accounts for
approximately 80% of all breast cancers (BREASTCANCER.ORG, 2020).
Detection of IDC cells through histopathology images is a laborious and
challenging work since the pathologist needs to examine large tissue
patches of benign regions to eventually identify the malignant areas (Cruz-
Roa et al., 2014). This is where deep learning methods, particularly
convolutional neural networks (CNNs), are very good at predicting the
classification of IDC cell images by focusing on predominant features in
an automated way.
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In related research on artificial intelligence applications in breast cancer
histopathological detection since 2012 (Zhou et al., 2020), CNNs have been
the most common method in image classification due to their ability to
automatically learn features, the availability of publicly labelled datasets
in recent years, the emergence of high-performance GPU computing and
learnings from applications in natural language processing, and image
recognition.

1.2 Literature Review

In the last four years, one of the most popular strategies to train CNNs has
been “transfer learning” by either fine-tuning the parameters of a pre-
trained state-of-the-art network as per the target task or training a new
classifier on features extracted using a pre-trained network. Even though
there are not many readily available public datasets on breast cancer
histology, four datasets have been covered a lot in the research papers over
the last few years. There is a strong adoption of transfer learning methods
in a lot of papers for these datasets.

For the BreakHis dataset released by Spanhol et. al. in (Spanhol et al.,
2016) which has 7,909 histopathological images distributed across 40x, 100x,
200x, and 400x magnifications, Saxena et. al. proposed pre-trained ResNet50
and the kernelized weighted extreme learning machine to address the class
imbalance problem in (Saxena et al., 2020). They outperformed state-of-
the-art models on 100x, 200x, and 400x magnifications using identical
training-testing folds to deliver accuracy of 87.14%, 90.02%, and 84.16%
respectively. In (Xu et al., 2019), an innovative three-step attention based
approach involving Partially Observed Markov Decision Process (POMDP)
along with a combination of deep learning techniques of recurrent neural
networks (RNNs), long short-term memory networks (LSTMs), and
reinforcement learning was used. In (Jiang et al., 2019), a smaller Squeeze-
and-Excitation-Resnet module which provides better performance with
fewer parameters than that used by a network of residual module and
Squeeze-and-Excitation block (Hu et al., 2020) is proposed. This model
provides accuracy between 98.9% and 99.3% for binary classification, and
between 90.7% and 93.8% for multi-class classification.

In (Aresta et al., 2019), a dataset of 400 images (of dimension 2048 x
1536 pixels) stained with Hematoxylin and Eosin (H&E) was released under
the Grand Challenge on Breast Cancer Histology (BACH) organized along
with the 15" International Conference on Image Analysis and Recognition
(ICIAR 2018). The goal was to classify them in four classes including normal,
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benign, in-situ carcinoma and invasive carcinoma. In (Golatkar et al., 2018),
a patch selection method using nuclear density followed by a transfer
learning based algorithm based on fine-tuning Inception-V3 network was
proposed. This method achieved 85% accuracy over the four categories
and 93% accuracy for non-cancer (normal/benign) over malignant (in-situ/
invasive carcinoma), which outperformed older benchmark. In (Ferreira
et al., 2018), they adopted a transfer learning approach based on fine-tuning
and adding top layers to the Inception ResNet-V2 (Szegedy et al., 2016)
architecture, finally achieving 93% validation accuracy and 76% test
accuracy. In (Kohl et al., 2018), three transfer learning models based on
VGG-19 (Zisserman et al., 2015), Inception-v3 (Szegedy et al., 2015) and
DenseNet-161(Huang et al., 2018) were used for the classification task. While
these networks were pre-trained on ImageNet, DenseNet-161 outperformed
other methods by achieving 94% accuracy. In (Wang et al., 2018), one model
using only transfer learning with VGG-16 (Zisserman et al., 2015)
architecture was compared with another model using transfer learning
followed by a support vector machine (SVM) classifier, achieving 91.7%
accuracy on the test set.

The Camelyon16 dataset has 400 whole-slide images (split into 270 for
training and 130 for testing) based on samples from Radbound UMC and
UMC Utrecht, released as a part of “Camelyon Grand Challenge” for
detection of metastatic breast cancer in WSIs of sentinel lymph node
biopsies. In (Wang et al., 2016), an approach using GoogLeNet architecture
was used to secure AUC of 92.5%. A human pathologist had independently
reviewed this as well to obtain AUC of 96.6%. Combining both these
approaches resulted in AUC of 99.5% which was an 85% reduction in human
misclassification rate. In (BenTaieb et al., 2017), a recurrent visual attention-
based architecture was used on a similar setup to achieve AUC of 96%. In
(Lin et al., 2018), a fast and dense screening approach called ScanNet was
introduced, achieving AUC of 98.75%. This was built on the VGG-16
network architecture by replacing the last 3 fully connected layers with
fully convolutional layers.

In (Cruz-Roa et al., 2014), Cruz-Roa et. al. introduced our IDC dataset
of interest containing 277,524 patches of IDC whole slide images with
28.39% of positive samples. They developed a custom 3-layer CNN
architecture which resulted in F1-score and balanced accuracy of 71.80%
and 84.23% respectively. In (Janowczyk and Madabhushi, 2016), Janowczyk
and Madabhushi used AlexNet architecture with additional cropping and
rotations to achieve F1-score and balanced accuracy of 76.48% and 84.68%
respectively on the IDC dataset. In (Romero et al., 2019), Romero et. al.
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leveraged the Inception architecture (Szegedy et al., 2015) introduced by
Szegedy C. et. al. and combined it with the regularization technique of
batch normalization (loffe and Szegedy, 2015) to reduce internal covariate
shift. Applying this approach to the IDC dataset, F1-score and balanced
accuracy improved to 89.7% and 89% respectively. In (Narayanan et al.,
2019), Narayanan et. al. first pre-processed IDC patches using color
constancy technique and then applied a custom 5-layer CNN architecture
resulting in Area-Under-Curve (AUC) of 0.94 which was a benchmark for
future efforts. In (Alghodhaifi et al., 2019), Alghodhaifi et. al. tested 2 CNN
models on the IDC dataset. One was a depth-wise separable convolution
network while the other was a standard convolution network. Each of these
models was tested with different activation functions — ReLU, Sigmoid,
and Tanh. Standard convolution network with ReLU activation delivered
the best results with 76% F1-Score, 87.13% accuracy, and 93.44% sensitivity.

Besides the BreakHis, BACH, CAMELYON and IDC datasets, there has
been some interesting research on similar classification tasks in other
datasets and in different domains. In (Hameed et al., 2020), Hameed et. al.
performed ensemble deep learning on their collected dataset using VGG16
and VGG19 models. The ensemble of fine-tuned VGG16 and VGG19 models
delivered promising results with a sensitivity of 97.73%, an accuracy of
95.29%, and F1-score of 95.29% for the carcinoma class. In (Zhou et al.,
2020), Zhou et. al. has presented a detailed review of the classical and deep
neural network techniques presented since 2012 for breast cancer
histopathology image analysis. To sum up, most of the better-performing
algorithms have leveraged transfer learning and CNNs to come up with
innovative combinations to solve the histopathology image classification
problem.

The main aim of this research is to propose a model to predict the
occurrence of Invasive Ductal Carcinoma (IDC) cells in histopathology
slides prepared for breast cancer detection. We seek to explore state-of-
the-art transfer learning strategies and compare the performance of such
architectures with that of a personalized prediction model using CNNs in
order to identify a good solution which can support the pathologist in
solving the IDC detection problem.

2. RESEARCH METHODOLOGY

2.1 Dataset Selection

The original dataset (Cruz-Roa et al., 2014) consists of digitized whole slide
images. These images were obtained from breast cancer histopathology
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slides of 279 patients diagnosed with IDC at the Hospital of the University
of Pennsylvania and The Cancer Institute of New Jersey. The patch-based
dataset was introduced by Cruz-Roa et. al. (Cruz-Roa et al., 2014) for IDC
image classification. Only 28.4% of the 277,524 patches are IDC positive.

2.2 Dataset Preparation

A whole-slide scanner has been used for digitizing the images at 40x
magnification (0.25 um/pixel resolution). Since these images were too large
for analysis, they were down sampled (by a factor of 16:1) to 4 im/pixel.

Using grid sampling, each whole slide image was thus divided into
non-overlapping image patches. The patches exhibiting fatty tissue or slide
background were discarded. Patches containing IDC were manually
annotated by a pathologist using a binary annotation mask. To establish
the gold standard or ground truth for training purposes, patches were
labelled as positive (i.e. “1’) if the mask covers a minimum of 80% of the
patch region, otherwise, they were labelled as negative (i.e. ‘0"). This resulted
in 277,524 RGB patches of 50 x 50 pixel size.

2.2.1 Data Pre-processing

The data will be randomly split into 3 subsets—training for building the
initial model, validation for tuning, and testing for final evaluation. One of
the problems in whole-slide image patches is that there could be large
number of patches without relevant information for the classification
problem. However, given that there are close to 80,000 patches which are
IDC positive, this should not be a major issue in this case.

2.2.2 Data Augmentation

While the analysis of an imbalanced dataset can be managed by under-
sampling, over-sampling, or algorithmic methods (Vluymans, 2019), there
is a need to evaluate whether the problem of balancing the data at this
stage can be addressed by data augmentation or by using a weighted binary
entropy as a loss function. In order to assess the impact of data augmentation
on model performance, random translations (shifts in height or width),
rotations, zoom, horizontal and vertical flips will be used.

2.3 Modelling Approaches

Our custom model is a CNN-based architecture trained using labelled patch
data. This architecture involves building a convolutional neural network
where the convolution operation is applied on pixel information of large
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images by smaller filters. This helps in extracting lower level features that
are used as predictors for classification task. Once the convolution
operations have been applied through a set of smaller size filters (usually
one for each feature map) in a convolution layer, the data is passed through
three layers:

* Pooling layer: This layer helps in reducing dimension of large image
representation by sampling subsets of feature maps through pooling
functions in a way that local invariant feature information is not lost.

¢ Fully Connected layer: This layer is usually a part of the top layer of
the CNN which takes inputs from the pooling layer and converts the
high-level feature data into a feature vector.

* C(lassification layer: This is the final layer and is also a fully connected
layer. The number of neurons in this layer is equal to the number of
classes being used for the classification task and the activation function
is usually the soft-max function.

Further, these layers are also interspersed with dropout and batch
normalization layers to improve the generalizability of learning and reduce
over-fitting of data.

The idea is to perform experiments involving CNNs through different
combinations of state-of-the-art network architectures by adopting transfer
learning techniques (Tammina, 2019). Experimentation has been done with
models where the pre-trained CNNs are followed by fully connected layers
on top to optimize the model performance. The output of such models is
compared with a custom-built CNN-based architecture involving different
feature extraction methods similar to convolutional auto-encoders
(Maggipinto et al., 2018) along with hyperparameter tuning and
optimization techniques.

C3: feature maps
32@30x30 S4: pooled maps

C1: feature maps 32@15x15

S2: pooled maps
Image patch 16@74x74
3@61x81 16@37x37 ,LDOC,:\] o
= ==
VAL~ ij &
- 22 Bf(s 'M Full Classifier
Convolutions Subsampling Oonvo!utlons Sub§amP|ln9 connected | i
(Convolution layer) (Pooling layer) | (Convolution layer) | (Pooling layer) layer (logsoftmax)
>

Figure 1: Sample CNN Architecture (Cruz-Roa et al., 2014)
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2.3.1 Transfer Learning Methods-Model Architecture

In (Weiss et al., 2016), a survey of transfer learning is presented along with
formal definitions. The central idea is to improve performance in a function
by borrowing information from another related function. While applying
deep learning techniques to classification problems, transfer learning from
state-of-the-art algorithms has been one of the most common approaches.
This is mainly done in two ways:

¢ fine-tuning predefined parameters of a state-of-the-art network

¢ utilizing the pre-trained network layers for feature extraction and
replacing the final layers of the pre-trained network with the target
classification network

In (Canziani et al., 2016), the performance of most of the common state-
of-the-art algorithms have been analysed in terms of accuracy,
computational resources, operations, inferences, and parameter size. This
helps in identifying the likely models we should focus on for transfer
learning methods.

As per Figure 2, ResNet-50 provides one of the best accuracies without
being very operationally intensive. ResNet-50 architecture was introduced
in (He et al., 2016).

Inception-v4
80 1
Inception-v3 ResNet-152
. Recht-Soe VGG-16 VGG-19
75 1 ResNet-101
° ResNet-34

70 4 ﬂ ResNet-18

GoogleNet

ENet

© BnN-NIN

Top-1 accuracy [%)
o
wv
L

60 4 5M 35M &65M 9s5M 125M - 155M
BN-AlexNet
55 AlexNet
50 T T Ll Ll T L T LJ
0 5 10 15 20 25 30 35 40

Operations [G-Ops)

Figure 2: Top-1 Accuracy vs Operations (Canziani et al., 2016)
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Figure 3: ResNet Architecture

weight layer
Flx) relu
\ ‘ x
weight layer _—
e identity
Flx)+x

Figure 4: Residual learning

In the ResNet model, the layers are learning residual functions of the
inputs coming from previous layers. This helps in preventing the
performance of higher layers to be worse than the lower layers. This is
achieved by inserting shortcut connections to a VGG-19 type of network.

Since ResNet-50 has been one of the most widely followed transfer
learning method and has stood the test of time, we are using it as one of
the state-of-the-art networks for transfer learning.

Considering the trade-off between speed and accuracy while training
deep learning models, one of the most popular set of models in recent
years has been the MobileNet architecture. In (Howard et al., 2017),
MobileNets are described as a set of efficient models since they use
depth-wise separable convolution networks instead of standard
convolution networks.
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Ty pe / Stride Filter Shape Input Size
Conv / s2 33 B 5k 3 3¢ 2 228 > 224 B
Conv dw / s1 3 = 3 =< 32 dw ISR > 12 S5¢ B2
Conv / s1 1> 1 > 82 > 64 112 > 112 > 32
Conv dw / s2 3 = 3 < 64 dw 112 < 112 x< 64
Conv/ sl 1 1 >x 64 >x 128 56 =< 56 =< 64
Conv dw / s1 3 x 3 x 128 dw 86 x< 56 x< 128
Conv / s1 1> 1 >x 128 x 128 56 < 56 = 128
Conv dw / s2 3 = 3 =< 123 dw 56 < 56 < 128
Conv / s1 1 xx 1 x 128 x 256 28 x 28 x 128
Conv dw / s1 3 = 3 =< 256 dw 28 x 28 x 256
Conv/ sl 1 < 1 =< 256 =< 256 28 x 28 x 256
Conv dw / s2 3 = 3 =< 256 dw 28 x 28 x 256
Conv/ sl 1> 1 > 256 x< 512 14 x 14 < 256
SxConvdvv/sl 3 x 3 x 512 dw 14 >¢ 14 > 512
T Conv / sl 1> 1 > 512 x 512 14 < 14 x 512
Conv dw / s2 3 = 3 < 512 dw 14 x< 14 x< 512
Conv / sl 1> 1 > 512 >x 1024 T > 'd > 512
Conv dw / s2 3 x 3 < 1024 dw T >x T x 1024
Conv/ sl 1 < 1 x 1024 =< 1024 7T x 7 x 1024
Avg Pool / s1 Pool 7 = 7 7 x 7 x 1024
FC/ s1 1024 =< 1000 1 <1 x 1024
Softmax / sl Classifier 1 < 1 =< 1000
Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1 =< 1 04 . 86% 74.599%
Conv DW 3 < 3 3.06% 1.06%
Conv 3 < 3 1.19%9% 0.02%
Fully Connected 0.18% 24.33%
Figure 5: MobileNet Architecture
3x3 Conv 3x3 Depthwise Conv
| |
| |
RelLU RelLU
[
1x1 Conv
[
[
RelLU

Figure 6: Standard CNNs vs Depth-wise CNNs
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The MobileNet model introduces 2 global hyperparameters called width
multiplier and resolution multiplier which can be changed to make the
network trade off acceptable accuracy in order to improve on size and
speed. This is how they achieve higher efficiencies. Since MobileNet models
provide the power to deploy models on mobile and edge platforms, they
can be useful in building scalable systems for breast cancer detection. So,
we will be considering it for our experimentation with transfer learning.

In terms of improving accuracy and efficiency, one of the most recent
architectures that have gained prominence are the EfficientNet models.
In (Tan et al., 2020), the concept of model scaling has been introduced
which helps in balancing network depth, width, and resolution to achieve
better performance. This model scaling is achieved through a compound
scaling method. With the help of a compound coefficient, network depth,
width and resolution are uniformly scaled in a principle way. In order to
build the EfficientNet, a baseline network is initially built using a neural
architecture search which optimizes accuracy and floating-point
operations per second. This is then scaled up using the compound scaling
method to create the final architecture. Given its accuracy and efficiency,
we are also experimenting using the EfficientNet-B7 model for transfer
learning.

EfficientNet-B7
&4 AmoebaNet-C
AmoebaNet-A ____——"""
- -
% ®
7 NASNet-A SENet
o ’,
<
=
) .
< ResNeXt-101
’
3 s &
o P Inception-ResNet-v2
< ’
. ,’ L
'8_ 0 Xception
=78 I
- ] é oResNet-152 Topl Acc. #Params
8 ¢ DenseNet-201 ResNet-152 (He et al | 2016) 778% HOM
& EfficientNet-B1 ™.1% 1AM
g I ResNeXt- 101 (Xse et al, 2 0 0% LT
{ [ ® EfficientNet-B3 $1.6% 12M
- I ResNet-50 SENet (Hu et al, 2018 SR oM
l. NASNet-A (Zoph et al, 2018 £27% suM
] Efficient Net- B4 X29% 19\
Inception-v2 GPipe (Huang et al, 2018 34.3% SS6M
NASNet-A EfficientNet-B7 | M 66\
e Not plotted

ResNet-34

Number of Parameters (Millions)

Figure 7: Top-1 Accuracy vs Number of Parameters (Tan et al., 2020)
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Convolutional layers Fully-connected layers
15 Source task labels
Pretrained m— Cl = C2>C3>C4>>Cn—> FC6—* FC7 Dog
model ‘ ﬂ} ‘ { Cat
|

2 Transfer initial weights
Feature &
transfer Fine-tune during the training process

31 Patches Target task labels
Classifier — C1 — C1>C2>C3>>Cn — FC6— FC7— LGG
learning r. .1 HGG

New adaptation layers
trained on target task

New adaptation layers
trained on target task

Figure 8: A typical CNN transfer learning pipeline. LGG and HGG stand for the
binary classification labels of ‘0" and ‘1.

2.3.2 Comparative Analysis of State-of-the-Art Architectures

ResNet50

MobileNet-V?2

EfficientNet- B7

CancerNet-S5Ca

* Has several variants - ® Uses depth-wise sep- ® Used for scaling all

ResNet-18, ResNet-34,

arable convolution

ResNet-50, ResNet-101, as its basic unit

ResNet-152, etc.

e Convolution block,
Identity block and
Residual block.

¢ Learns residual func-

tions from inputs of
previous layers.

¢ Identity block helps
address vanishing
gradient problems.

* Assembly of smaller
networks.

¢ Bottleneck residual

block design for Res-

Net50 onwards-3
layers (1x1,3x 3,
1 x 1 convolutions).
are stacked one over
the other for each
residual function.

¢ Batch normalization
helps reduce covari-
ate shift.

® One of the most

popularly used CNN

methods for image
recognition.

which factorizes a
standard convolution
into a depth-wise
convolution and

1 x 1 pointwise
convolution.
Factorization drasti-
cally reduces comp-
utations and model
size.

Based on an Inverted
Residual Block struc-
ture where the resid-
ual connections are
for bottleneck layers
[Traditional Residual
block follows a wide
— narrow — wide
structure but inverted
residuals follows a
narrow — wide —
narrow approach]
Used primarily for
mobile devices and
embedded mobile
applications.

the dimensions of
images with a stable
coefficient which get
added to the baseline
network.

Scaling helps in
balancing network
depth, width and
resolution to achieve
better performance.
Uses a compound
scaling method
which uses a comp-
ound coefficient to
uniformly scale all
dimensions of net-
work depth, width
and resolution.
Useful for using
deep learning on the
edge and mobile
devices, as it reduces

* Self-attention archi-
tecture design with
attention condensers.

¢ Highly diverse and
heterogenous net-
work architecture
with a mix of spatial
convolutions, point-
wise convolutions,
depth-wise convo-
lutions.

* Number of channels
in each visual atten-
tion condenser
represents the num-
ber of channels for
the down-mixing
layer, the embed-
ding structure and
the up-mixing layer
respectively

® Used for detection
of skin cancer from

compute cost, battery dermoscopy images.

usage, training and
inference speeds.
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2.3.3 Building Customized Model-Model Architecture

We are comparing the outcome of our transfer learning models with a
customized CNN model which uses an architecture inspired from
convolutional autoencoders for feature extraction with dropout and batch
normalization after every block to improve generalizability and reduce
overfitting.

Autoencoder models have two parts—Encoder and Decoder. The
encoder part learns the information from the input and reduces higher
dimension data to a lower dimension representation. The decoder part
then uses the encoder output to regenerate the input in an unsupervised
way. Once this is complete, the encoder output provides the features
information which can then be used for supervised classification through
the final layer. Since the autoencoders are so powerful in extracting features
in lower dimensions, we expect to build an efficient network using a similar
architecture.

Since Adam optimizer works better on sparse gradients and is more
robust to hyperparameter changes, we will be using Adam optimizer as
the optimization algorithm. In (Smith, 2017), it is shown that varying
learning rates cyclically between boundary values provide better
optimization in performance. So, we will be first estimating boundary
values by linearly increasing learning rates for a few epochs and then
varying the learning rates within these values for hyperparameter
optimization.

2.3.4 Evaluation & Interpretation

The model performance will be evaluated based on standard measures of
classification quality. Key metrics like Accuracy, Precision, Sensitivity
(Recall), Specificity, F1-Score, G-mean, and MCC (Matthews Correlation
Coefficient) will be used for comparing the model performance across
experiments. In addition to this, Classification Report will be used to
evaluate and visualize the health of the model’s classification performance.

3. ANALYSIS AND RESULTS
3.1 Dataset Description

The original dataset (Cruz-Roa et al., 2014) consisting of 277,524 patches is
available as a compressed file named “IDC_regular_ps50_idx5.zip” of size
1.6 GB. Since this contains data for 279 cancer patients, each patient has a
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patient ID. For each such patient ID, we have patches for both IDC positive
and negative instances.

The format of the file name on each path is as follows: nxXyYclassC.png
— example: 99999idx7x1521y1011class0.png. Here, n represents the first 9
characters (99999idx7) which denote the patient ID. The x-coordinate and
y-coordinate of the image representing the start of the patch are denoted
as X and Y respectively. The class label is given by C, i.e. 1 for IDC and 0 for
non-IDC.

3.2 Exploratory Data Analysis

Data visualizations have been created to help us understand the
distributions of patches across patients and the distributions of IDC positive
and negative cases across these patches.
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Figure 9: IDC Images. First row images having label ‘1’ denote IDC positive patches
and second row images having label ‘0’ denote IDC negative patches.
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Figure 10: File directory structure of patch image dataset.
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How many patches do we have per patient?
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Figure 11: Distribution of number of patches across patients

How much percentage of an image is covered by IDC?
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Figure 12: Percentage distribution of IDC instances across patients

In Figure 11, it is observed that the number of patches per patient varies
over a wide range, as some patients have only 100+ patches and some have
as much as 2400+ patches. This could mean that the resolution of cells might
be changing across patients.

Figure 12 presents the proportion of IDC positive instances in the
patches for each patient. While some patches have very less percentages of
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IDC positive cases, there are patients who have 80% patches as IDC positive.
Possible reasons for the latter cases could be that either the cancerous cells
have spread across the cell patches or the region of interest predominantly
focuses on the cancerous region.

Figure 13 highlights that close to 80,000 IDC positive instances
contribute to only around 29% of the overall total of 277,524 patches.

Figures 14 and 15 give a quick glimpse into some of the IDC positive
and negative patches. Upon comparing both these views, it is noticed that
the cancerous patches tend to be more violet in colour than the
non-cancerous ones. The pathologist can help us understand whether this
is due to specific response of cancerous cells to test stains or due to presence
of specific cells and tissues in certain patches.

Since co-ordinate information is available in the filenames of the patch
images, the IDC label information on the x-y coordinates has been plotted
in the form of blue areas for label ‘0" and red areas for label ‘1". In Figure
16, it is observed that the cancer patches are commonly present in clusters.
However, there are tissue patches with no information as well that is
represented by the blank cells. The pathologist can help us understand if
these tissues have been discarded as per testing process or these are
instances of lost information.
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Figure 13: Number of patches showing IDC positive vs negative
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Figure 15: Non-Cancerous patches showing IDC negative
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Figure 16: Representing IDC label information on patch x — y coordinates
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Figure 17: Overlay of IDC positive image on breast tissue for patient ID 12893

In Figure 17, the patch images have been stitched together into the
entire tissue based on x-y coordinate information and the IDC positive
image has been overlaid on this for a particular patient.

3.2.1 Data Split for Training, Validation & Testing

Before moving to data transformation and augmentation, the dataset of
277,524 images has been randomly split into 80% for training and 20% for
testing purposes. 10% of the training set has been further split as validation
data for tuning purposes. While data transformation techniques for target
pixel size and rescaling have been applied to both training and validation
data, data augmentation techniques have only been applied to training
data.

3.2.2 Data Transformation

Since convolutional neural network architectures with pooling layers of
size 2 x 2 have been used, pixel sizes with higher powers of 2 are preferable
for analysis. Pixel size of 48 x 48 is very close to the original pixel size and
is also equivalent to 2* x 3. So, a target size of 48x48 has been adopted for
analysis of images.

Further, the images have been rescaled by dividing each pixel value by
255 so that all pixel values fall within the range of 0 to 1. The images have
been rescaled by normalizing them. Only the training set of images has
also been randomly shuffled to prevent memorization during the learning
process. Common data augmentation techniques including random
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translations through shifts in height and width, rotations, zoom, horizontal
and vertical flips have been used.

3.3 Model Building

The performance of the customised model has been compared with that of
4 transfer learning models built using some of the most well-known state-
of-the-art models commonly applied in other fields. These models include
ResNet-50, MobileNet-V2, and EfficientNet-B7. In addition to this, there
are attempts to improve upon the CancerNet algorithm proposed by Adrian
Rosebrock at www.pyimagesearch.com/2019/02/18/breast-cancer-
classification-with-keras-and-deep-learning/ which has been tested on this
dataset earlier.

3.3.1 Customized Model

A custom CNN-based architecture that uses an encoder architecture with
dropout and batch normalization after every block to improve
generalizability and reduce overfitting has been built. This architecture is
named as Custom CNet. It strives to reduce dimensionality by 8 times from
48 to 6 pixels during the feature extraction process.

During hyperparameter tuning, learning rate parameters (0.01, 0.005)
and batch size parameters (32, 64) have been tested. The best
hyperparameters were learning rate of 0.01 and batch size of 64. Adam
optimizer has been used as the optimization algorithm. Binary cross-
entropy has been used as the loss function. Given the significant time
involved in training the model for every iteration, more hyperparameters
have not been tested.

Input Image
48*48*3

Image Size
24*24*32

Image Size
12*12%64

Image Size
6*6*128

Image Size
6*6*256

Conv 1: 3*3@32
Relu 1
Batch Normalization 1

Conv 2: 3*3@32
Relu2
Batch Normalization 2

Max-Pooling 1: 2*2
Dropout 1: 0.25

NG

Conv 3: 3*3@64
Relu 3
Batch Normalization 3

Conv 4: 3*3@64
Relu4
Batch Normalization 4

Max-Pooling 2: 2*2
Dropout 2: 0.25

4

Conv 5: 3*3@128
Relus
Batch Normalization 5

Conv 6: 3*3@128
Relu 6
Batch Normalization 6

Max-Pooling 3: 2*2
Dropout 3: 0.25

,\\

}

s

& i

\
Conv 7: 3*3@256
Relu 7
Batch Normalization 7

Conv 8: 3*3@256
Relu8
Batch Normalization 8

Dropout 4:0.25

/

/o N\
Flatten
Dense: 256

Relu s
Batch Normalization 9
Dropout 5: 0.5

Dense: 2
Softmax

\
p

Figure 18: CustomCNet: CNN-Model Architecture
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The performance of this model has been compared with that of
CancerNet algorithm on the same dataset. Two versions of CancerNet
algorithm were used. While the first one was the original version, the second
one was the version post hyperparameter tuning.

i
H
:

Figure 19: CancerNet Model Architecture

3.3.2 Transfer Learning

Both the common approaches used in transfer learning have been
experimented:

¢ fine-tuning predefined parameters of a state-of-the-art network, and

¢ utilizing the pre-trained network layers for feature extraction and
replacing the final layers of the pre-trained network with the target
classification network

le-06 le-05 le-04 le-03 le-02 le-01
Learning Rate

Figure 20: ResNet-50 Learning rate
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Figure 21: EfficientNet_B7 Learning rate
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Learning Rate

Figure 22: MobileNet_V2 Learning rate

Among the recent literature on state-of-the-art CNN networks,
MobileNet and EfficientNet architectures are being discussed a lot. This is
due to their focus on efficiency as well as accuracy which makes it easy to
adopt them in the practitioner world. There is not a lot of research yet on
adopting some of these approaches towards diagnostic issues in healthcare.
These methods have been applied in conjunction with ResNet-50 which
has been one of the most common and traditional networks followed for
transfer learning. The objective of the analysis is to identify the opportunity
and learnings when we compare the working of the custom models with
those of state-of-the-art transfer learning models.
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While doing transfer learning, learning rate has been optimized by
following the cyclical learning rate strategy mentioned in (Smith, 2017).
By plotting the loss function against varying degree of learning rates,
the region with the sharpest decline in loss function has been identified
and the corresponding values of learning rate for this region have been
used.

3.3.3 Model Execution

Keeping in mind the practical applicability of the proposed solution, the
number of trainable parameters has been analysed against the time taken
for training our models over 10 epochs. Since the transfer learning models
have been run only on 9 epochs, the time for 10 epochs has been
extrapolated for our analysis. As seen in Figure 23, while ResNet-50 and
MobileNet-V2 have taken the shortest time to train, EfficientNet-B7
provides the best accuracy.

Accuracy vs Time Analysis
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Figure 23: Model Accuracy vs Time Analysis

3.4 Model Evaluation

The model output has been evaluated through performance metrics
calculated from the classification report based on model predictions.
Considering that there is class imbalance in data, a range of metrics have
been calculated to give us a better idea of predictive measure by effectively
balancing between both false positive and false negative rates (Akosa, 2017).
Most of them are derived from Sensitivity, Specificity and Precision. These
metrics include Geometric Mean (G-Mean), Discriminant Power, F-Measure
(F1-Score), Balanced Accuracy, Matthew’s Correlation Coefficient (MCC),
Youden’s Index, Positive Likelihood Ratio and Negative Likelihood ratio.
The objective of the model evaluation is to comment on the practicability
of the solution considering the performance effectiveness in conjunction
with the computational complexities.
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3.5 Visualizations of Model Results
3.5.1 Custom Model-CustomCNet

Epoch 1/10

3122/3122 [

] - 34705

6 - val loss: 0.5542 - val accuracy: 0.7274

1s/step - loss: 0.6366 - accuracy: 0.812

Epoch 2/10

3122/3122 [ ] - 26285 842ms/step - loss: 0.5157 - accuracy: 0.
8436 - val loss: 0.4363 - val accuracy: 0.8382

Epoch 3/10

3122/3122 [ ] - 26505 849ms/step - loss: 0.4895 - accuracy: 0.
8514 - val_loss: 0.3587 - val_accuracy: 0.8489

Epoch 4/10

3122/3122 [ ] - 26775 857ms/step - loss: 0.4744 - accuracy: 0.
8573 - val_loss: 0.3976 - val_accuracy: 0.8174

Epoch 5/10

3122/3122 [ ] - 26705 855ms/step - loss: 0.4565 - accuracy: 0.
8618 - val_loss: 0.4094 - val_accuracy: 0.8318

Epoch 6/10

3122/3122 [ ] - 26455 847ms/step - loss: 0.4431 - accuracy: 0.
8666 - val_loss: 0.4177 - val_accuracy: 0.8201

Epoch 7/10

3122/3122 [ ] - 26565 851ms/step - loss: 0.4356 - accuracy: 0.
8693 - val_loss: 0.3408 - val_accuracy: 0.8531

Epoch 8/10

3122/3122 [ ] - 2657s 851ms/step - loss: 0.4313 - accuracy: 0.
8711 - val loss: 0.3565 - val_accuracy: 0.8502

Epoch 9/10

3122/3122 [ ] - 2668s 854ms/step - loss: 0.4192 - accuracy: 0.
8745 - val_loss: 0.3842 - val_accuracy: 0.8281

Epoch 10/10

3122/3122 [ ] - 26825 859ms/step - loss: 0.4203 - accuracy: 0.

8745 - val_loss: 0.3522

val_accuracy: 0.8445

Figure 24: CustomCNet — Model Execution
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Figure 25: CustomCNet — Model Output
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Table 2: CustomCNet — Model Summary

model.summary ()

Model: "sequential™

Layer (type) Qutput Shape Param #
convad (Comv20)  (None, 48, 45, 32>  sse
activation (Activation) (None, 48, 48, 32) =]
batch_normalization (BatchNo (None, 48, 48, 32) 128
conv2d_1 (Conv2D) (None, 48, 48, 32) 9248
activation_1 (Activation) (None, 48, 48, 32) =]
batch_normalization_1 (Batch (None, 48, 48, 32) 128
max_pooling2d (MaxPooling2D) (None, 24, 24, 32) (=]
dropout (Dropout) (None, 24, 24, 32) e
conv2d_2 (Conv2D) (None, 24, 24, 64) 18496
activation_2 (Activation) (None, 24, 24, 64) (=]
batch_normalization_2 (Batch (None, 24, 24, 64) 256
conv2d_3 (Conv2D) (None, 24, 24, 64) 36928
activation_3 (Activation) (None, 24, 24, 64) =]
batch_normalization_3 (Batch (None, 24, 24, 64) 256
max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) (=]
dropout_1 (Dropout) (None, 12, 12, 64) =]
conv2d_4 (Conv2D) (None, 12, 12, 128) 73856
activation_4 (Activation) (None, 12, 12, 128) (=]
batch_normalization_4 (Batch (None, 12, 12, 128) 512
conv2d_S5 (Conv2D) (None, 12, 12, 128) 147584
activation_5 (Activation) (None, 12, 12, 128) (=]
batch_normalization_5 (Batch (None, 12, 12, 128) S12
max_pooling2d_2 (MaxPooling2 (None, 6, 6, 128) (=]
dropout_2 (Dropout) (None, 6, 6, 128) e
conv2d_6 (Conv2D) (None, 6, 6, 256) 295168
activation_6 (Activation) (None, 6, &, 256) =]
batch_normalization_6 (Batch (None, 6, 6, 256) 1024
conv2d_7 (Conv2D) (None, 6, 6, 256) 590080

activation_7 (Activation) (None, 6, 6, 256) o
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batch_normalization_7 (Batch (None, 6, 6, 256) 1024
dropout_3 (Dropout) (None, 6, 6, 256) e
flatten (Flatten) (None, 9216) =]

dense (Dense) (None, 256) 2359552
activation_8 (Activation) (None, 256) e
batch_normalization_8 (Batch (None, 256) 1024
dropout_4 (Dropout) (None, 256) =]
dense_1 (Dense) (None, 2) 514
activation_9 (Activation) (None, 2) =]

Total params:
Trainable params:
Non-trainable params:

3,537,186
3,534,754
2,432

3.5.2 CancerNet Model
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Figure 26: CancerNet Model Execution
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Training Loss and Accuracy on Dataset
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Figure 27: CancerNet Model Output

3.5.3 ResNet-50 Model

The model execution output has been shown for the two instances of
transfer learning through the ResNet-50 model. Table 3 shows the output
of fine-tuning the pretrained ResNet-50 model (pretrained on weights used
for classification of ImageNet data). After fine-tuning the model, the layers
of the model have been unfrozen and re-trained on the images using optimal
learning rate for which the results are shown in Table 4.

Table 3: ResNet-50 Model Fine-Tune
epoch train_loss valid_loss accuracy time

0  0.412901 0.375586 0.834534 13:48
1 0.365206  0.336303 0.848335 13:02
2 0333652  0.319052 0.862352 12:46
3 0331069  0.310341 0.869469 12:46
4 0330482 0308528 0.867289 12:44
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Table 4: ResNet-50 Model Unfreeze
epoch train_loss valid loss accuracy time

0.359211
0.333413
0.306443

0.294635

3.5.4 MobileNet-V2 Model

The model execution output has been shown for the two instances of
transfer learning through the MobileNet-V2 model. Table 5 shows the
output of fine-tuning the pretrained MobileNet-V2 model (pretrained on
weights used for classification of ImageNet data). After fine-tuning the
model, the layers of the model have been unfrozen and re-trained on the
images using optimal learning rate for which the results are shown in

Table 6.

0.355639
0.317352
0.282767

0.273585

0.842318 12:52
0.869271 1253
0.881702 12:52

0.880279 12:52

Table 5: MobileNet-V2 Model Fine-Tune

epoch train_loss

0
1
2

0.401807
0.357975
0.344125
0.338152

0.333811

valid_loss

0.374662
0.335547
0.320747
0.313371

0.312214

accuracy
0.845038
0.850533
0.861740
0.865433

0.861199

Table 6: MobileNet-V2 Model Unfreeze

epoch train_loss valid_loss accuracy

0
1

0.335163
0.324552
0.336208

0.324179

0.310295 0.866280

0.309694 0.862388

0.307777 0.869199

0.307664 0.869955

time

13:45
13:01
12:46
13:00

12:55

time

13:00
12:50
12:43

12:45
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3.5.5 EfficientNet-B7 Model

The model execution output has been shown for the two instances of
transfer learning through the EfficientNet-B7 model. Table 7 shows the
output of fine-tuning the pretrained EfficientNet-B7 model (pretrained on
weights used for classification of ImageNet data). After fine-tuning the
model, the layers of the model have been unfrozen and re-trained on the
images using optimal learning rate for which the results are shown in Table 8.

Table 7: EfficientNet-B7 Model Fine-Tune

epoch train_loss valid_loss accuracy time
0 0.346948 0473715 0.821274 23:18
1 0.311501 0.306185 0.852299 22:54
2 0.299176 0.275587 0.879774 22:27
3 0.261325 0.261229 0.879576 22:03

4 0.251379 nan 0.898043 22:23

Table 8: EfficientNet-B7 Model Unfreeze
epoch train_loss valid_loss accuracy time

0 0293387  0.380248 0.789997 22:12

1 0.288463 nan 0873613 21:36
2 0.249660 nan 0907880 21:52
3 0.248752 nan 0.901701 21:40

3.6 Evaluation of Model Performance

The performance measures for all models have been compiled in Table 9.
Besides the common metrics of accuracy, sensitivity, specificity and
precision, additional metrics like Geometric Mean (G-Mean), Discriminant
Power, F-Measure (F1-Score), Balanced Accuracy, Matthew’s Correlation
Coefficient (MCC), Youden’s Index, Positive Likelihood Ratio and Negative
Likelihood ratio have been reported. In cases of class imbalance in data,

these metrics give a better idea of how good a predictive classifier is (Akosa,
2017).
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Table 9: All-Model Comparison of Performance Metrics

Models Impl d Formula CustomCNet| Tuned-CancerNet| Resnet50 |MobileNetV2|EfficientNetB7
Accuracy (TP+TN) /(TP + TN+ FP + FN) 0.85 0.84 0.88 0.87 0.90
Misclassification Rate (1- (FP+FN) /(TP + TN + FP + FN)

Accuracy) 0.15 0.16 0.12 0.13 0.10
Recall (or Sensitivity) TP/ (TP + FN) 0.91 0.89 0.91 0.87 0.91
Specificity TN/ (TN + FP) 0.82 0.82 0.87 0.87 0.90
Precision (or Positive TP/ (TP +FP)
Predictive Value) 0.67 0.66 0.73 0.73 0.78
G-mean SQRT(Sensitivity X Specificity) 0.86 0.85 0.89 0.87 0.90!
Discriminant Power SQRT(3)/(22/7) X (log(Sensitivity/(1-

Sensitivity)) + log(Specificity/(1-

Specificity)) 0.92 0.86 1.01 0.91 1.08
F-Measure (or F1-Score) 2 X (Sensitivity X Precision) / (Sensitivity

+ Precision) 0.77 0.76 0.81 0.79 0.84
IBaIanced Accuracy (Sensitivity + Specificity)/2 0.87 0.86 0.89 0.87. 0.91
Matthew’s Correlation [(TPXTN) - (FP X FN)] / SQRT[(TP + FP) X
Coefficient (MCC) (TP + FN) X (TN + FP) X (TN + FN)] 0.68 0.66 0.74 0.70 0.78
Youden's Index Sensitivity - (1 - Specificity) 0.73 0.71 0.78 0.74 0.81
Positive Likelihood Ratio  Sensitivity / (1 - Specificity) 5.06. 4.94 7.00: 6.69 9.10
Negative Likelihood Ratio (1 - Sensitivity) / Specificity 0.11 0.13 0.10 0.15 0.10;
Time Taken 7:36:43 5:53:59 2:09:33 2:09:44 3:42:42
Trainable Parameters 3,534,754 1,233,533 | 25,615,938 | 3,542,274 315,842

As observed in Table 9, the custom model (i.e. CustomCNet) performs
marginally better than the tuned CancerNet model. Considering the overall
predictive performance, EfficientNet-B7 model outperforms other models
on most of the performance metrics. In Figure 28, the performance
effectiveness of models has been compared with the time taken to train
them. This helps in understanding the relationship between accuracy and
computational complexity and decide on which model should be the
optimal choice as a classifier. Matthew’s Correlation Coefficient (MCC) has
been chosen as the performance metric for Figure 28, because it is one of
the least impacted by imbalanced data (Akosa, 2017).

Performance vs Time Analysis

0.80
0.78 EfficientNetB7,

0.76 = Resnet50, 315,842

074 25615938

Matthew's Correlation Coefficient (MCC) —»

0.72 MobileNetV2,
gzg 8,542,274 CustomCNet,
0.66 CancerNet, 3,534,754
0.64 1,233,533
0.62

0 5000 10000 15000 20000 25000 30000 35000

Training Time Taken for 10 Epochs (in seconds) --->
*Size of bubble denotes number of trainable parameters given with labels

Figure 28: Model Performance — Training Time Analysis
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3.7 Interpretation and Key Insights

For evaluation of classifier performance on imbalanced data, model
accuracy can be misleading since the majority class will have a greater
weightage to influence the results more than the minority class. In such
cases, sensitivity and specificity indicate the predictive quality of minority
class and majority class respectively. Since an ideal classifier should balance
both sensitivity and specificity, MobileNet-V2 and EfficientNet-B7 perform
better than others with EfficientNet-B7 being the best.

In case of medical diagnostics problems, false positives and false
negatives are also important.

For a detection system to be effective, it should be able to identify all
positive cases correctly. In cancer detection, misclassification of positive
cases as negative can cost human life if the patient is not able to get detected
at an early stage and treated properly. Misclassification of negative cases
as positive is also undesirable as a healthy person will be putting himself
through the trauma of the cancer treatment process. Hence, both recall
and precision play an important role in determining the effectiveness of a
medical diagnostic process. An ideal system should be able to balance both.
This is where our additional performance metrics help us identify models
with better predictive quality. Metrics like MCC, F1-Score and Discriminant
Power do a better job in evaluating the predictive power of a classifier. In
most of these measures, the CustomCNet model performs marginally better
than the CancerNet model. However, the transfer learning models built
on state-of-the-art networks perform much better than both these models.
EfficientNet-B7 provides the best performance among all the models on
most of the performance metrics.

As observed in Figure 28, the model performance comes at the cost of
computational complexity with trainable parameters in the order of millions
taking anything from 2+ hrs to 7+ hrs of training time. One of the reasons
why transfer learning models have dominated deep learning applications
for image classification is their ability to train faster with better predictive
performance despite complex architectures and high number of trainable
parameters. This is what has been seen in these experiments as well,
especially with the ResNet-50 model. Further, with some of the recent
advancements in deployment for cloud, mobile and edge platforms,
efficient architectures like MobileNet-V2 and EffficientNet-B7 make great
transfer learning models, especially for being deployed for practical
applications in industry. Being able to build such models at low cost and
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making them deployable over cloud, mobile and edge platforms will be
key to developing scalable systems. Such systems can help in expanding
state-of-the-art decision support and possibly improve mortality rate for
breast cancer across geographies. Since these models can be extended across
domains, similar systems can be built for most other medical diagnostics
services as well.

Despite providing almost similar performance levels, the CustomCNet
model takes longer time to train than CancerNet model. This is because
CancerNet uses depth-wise separable convolution layers which are more
efficient and require less computation than standard CNN layers. Depth-
wise separable CNNs are also a part of the MobileNet-V2 architecture and
contribute to their being lighter and more efficient.

4. CONCLUSIONS AND RECOMMENDATIONS

It is important to note that the last mile implementation of the Al solution
or deep learning model will most likely be monitored or handled by the
pathologist. Therefore, his role in conjunction with the deep learning
systems for medical diagnostics is crucial for successful delivery. During
our analysis, we realized that the deep learning prediction model can’t
just replace the pathologist job in detecting breast cancer. It will be most
effective when it will provide its prediction to the pathologist as an
intelligent decision support system with relevant measures on key
performance metrics. This will help the pathologist identify specific
problem areas to address. By adopting standardized prediction systems,
model predictions can help pathologist make lesser mistakes which could
arise due to difference in skill levels or non-availability of enough time
due to overwhelming workload. Evaluating recall and precision along with
focusing on false positives or false negatives arising due to conflict in model
and pathologist predictions can help save more human lives. In breast
cancer detection problems, it is better to err on the side of caution (i.e. false
positive) or detect disease early enough rather than discover a false negative
later at advanced stages.

Further, the pathologist can play an important role in better
understanding of the patch image data. During exploratory data analysis,
we found the pathologist’s insights will be useful to understand whether
some of the data issues are genuine or arising due to biological reasons.
For example, the pathologist can help us understand whether the violet
colour intensity in patches is happening due to specific response of
cancerous cells to test stains or due to presence of specific cells and tissues
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in certain patches. The pathologist can also help evaluate the gaps in patch
image data and assess whether these are due to deliberate discarding of
partial tissue or loss in information due to non-availability of patches. One
of the problems in whole-slide image patches is that there could be large
number of patches without relevant information for the classification
problem. In (Golatkar et al., 2018), patches have been selected for analysis
based on nuclear density represented by higher intensity of bluish pixels.
This helps us focus on patches with relevant information. Such analysis
can be further developed with help of the pathologist’s inputs.

We understand that the CustomCNet model delivered good results due
to the encoder-like architecture which helps us in reducing dimensionality
as we proceed through the feature extraction process. The process of
establishing ground truth for identifying positive or negative instances in
breast cancer detection and other medical diagnostics cases has
dependencies on the pathologist. However, the pathologist is usually
overwhelmed with a lot of workload due to increasing number of patients
and non-availability of many skilled pathologists. This makes ready
availability of correctly labelled data very difficult. Autoencoder
architectures can help us address this issue by using unsupervised methods
for initial clustering and feature extraction followed by additional neural
network layers along with limited supervised data for final classification.

One of the key takeaways of our analysis has been the power of transfer
learning through state-of-the-art network architectures like MobileNet-V2
and EfficientNet-B7 in terms of both classifier predictive quality as well as
efficiency in computational capacity. Comparing with existing literature
on the dataset we analysed for IDC detection, our best transfer learning
model based on EfficientNet-B7 outperforms two of the earlier approaches
employed in (Cruz-Roa et al., 2014) and (Janowczyk and Madabhushi, 2016).
Based on available literature of work done on our dataset so far, the
comparable parameters comprise accuracy, sensitivity, F1-score and
balanced accuracy. The EfficientNet-B7 based transfer learning model has
achieved accuracy of 90%, sensitivity of 91%, F1-score of 84% and balanced
accuracy of 91%.

Such transfer-learning based architectures hold a lot of promise in
developing scalable solutions that are deployable across web, cloud, mobile
and edge platforms without affecting performance and speed. This is
particularly important in the field of medical diagnostics and breast cancer
detection since it facilitates building systems for easier dissemination of
pathological services over distant geographies.
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Though existing transfer models have been developed to solve image
classification in other domains, they still provide encouraging results in
classification problems for disease detection as well. This is because the
low-level features may not be very different across domains. These models
do a good job in extracting low-level features and feed into custom fully
connected and dense layers at the top. However, there are opportunities to
further improve the classification performance for a lot of disease detection
problems as models with high-performance measures are critical to saving
human life in such cases. In order to accomplish this, there is a strong need
to develop state-of-the-art networks on image classification problems
specific to healthcare domain and make more relevant image datasets
publicly available covering patients across demographic and biological
profiles.

5. FUTURE WORK

There are opportunities to improve in terms of hyperparameter tuning
using random search and grid search methods combined with more
innovative CNN architectures. Since the execution run-time was ranging
from 2+ hours to 7+ hours for our models, such techniques couldn’t be
used due to time constraints. While implementing these techniques on
simple models may not surpass the performance of state-of-the-art transfer
learning models, applying them on more innovative architectures like
ensemble deep learning algorithms and multiple-staged CNN architectures
might provide state-of-the-art outcomes.

Explainable AI methods using class activation maps can be used to
study the activations across the CNN layers in more detail. However, a
medical expert may be needed to understand these activations accurately
since recognizing meaningful activations at a cellular level for
histopathological studies is much more nuanced than studying activations
of features across common image classification problems including humans,
cats, dogs, flowers, etc. This is an area where deep learning and CNNs can
assist histopathological research as well.

Developing state-of-the-art networks with publicly available
architectures and parameters on image classification problems specific to
healthcare domains will lead further advancement in leveraging more
powerful transfer learning models for IDC detection and similar tasks.
Having more publicly available image datasets covering patients across
demographic and biological profiles will also benefit such research.
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Continued focus on identifying architectures that are computationally

lighter, efficient and more accurate will help in building more powerful
and scalable systems that can be practically deployed across cloud, mobile
and edge platforms.
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List of Abbreviations
IDC.......... Invasive Ductal Carcinoma
CNN........ Convolutional Neural Network
GPU......... Graphical Processing Unit

POMDP...Partially Observed Markov Decision Process
RNN....... Recurrent Neural Network

LSTM.......Long Short-Term Memory

PCA......... Principal Component Analysis
SVM.........Support Vector Machines

Requirements and Resources

¢ Data: IDC Breast Cancer Histopathology dataset: This dataset was obtained from
breast cancer histopathology slides of 162 patients diagnosed with IDC at the
Hospital of the University of Pennsylvania and The Cancer Institute of New Jersey.

a. URL: http://andrewjanowczyk.com/wp-static/IDC_regular_ps50_idx5.zip
* Technology Stack: ‘Table 1: Selection of technology stack’
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# Area

Description

1. Programming Language

Python 3.x will be used for coding

2. Development Environment Jupyter notebook will be used as a development environment

3. Data Format

4. Python library for CNN

5. Pre-Processing, Feature
Extraction

6. Data Pipeline

7. Scalability

In most cases, data will be stored in the file system as ‘png’
and will be loaded into memory with the numpy library as a
numpy array(s). Also, there will be a few more data formats
to store and load data between the file system and memory.
There are many open-source packages available in Python for
working with CNN-based models. Packages ‘torch’ and ‘fastai’
provide a lot of features to train deep learning models. Also,
packages ‘Keras’ along with ‘Tensorflow” gives the user a lot
of control on designing the model. All these packages will be
tried for this research since there could be advantages with
each one for different levels of computationally intensive tasks.
Standard python libraries will be used for both Pre-processing
and Feature Extraction.

Data pipeline will consist of API based communication with
data exchange formats on both disk and memory.
Cloud-based scalable processing technology stack, database,
data model, and architecture will be validated and
recommended at the end of the research.




